LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - APRIL 2015

ST 2962 - MODERN PROBABILITY THEORY

Date : 25/04/2015 Time : 01:00-04:00

SECTION A

Answer ALL of the following.

- 1. Explain Probability space.
- 2. Define: Monotone Field.
- 3. What is convergence of random variables?
- 4. Define: Signed Measure
- 5. Define Mixture of Distributions.
- 6. Let X be a continuous Gamma Variate, derive, $M_{x}(\theta)$.
- 7. Derive the Harmonic Mean of Beta Distribution of first kind.

Dept. No.

- 8. Explain equivalent convergence.
- 9. When will you say, a random variable is said to be centered at some constant c and its expectation?
- 10. State Markov's theorem.

SECTION B

Answer any **FIVE** from the following

- 11. Prove that, The intersection of arbitrary number of fields is a field.
- **12**. Explain: Induced Probability Space with an example.
- 13. Show that Standard Gamma variate converges in distribution to Standard Normal variate.
- 14. Let $(X, Y) \sim BVN$ $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$. Derive the marginal density function of X.
- 15. State and prove the properties of Expectation of Non negative random variables.
- 16. Prove that, If $X_n \xrightarrow{p} X$ then, there exists a subsequence $\{X_{nk}\}$ of $\{X_n\}$ which converges a.s. to X.

17. Prove that, If
$$\sum_{k=1}^{n} x_{k} = S_{n} = S < \infty$$
 and $b_{n} \uparrow \infty$, then $\frac{1}{b_{n}} \sum_{k=1}^{n} b_{k} x_{k} \to 0$.

- 18. For a series of independent r.v's, prove that,
 - a. Convergence in probability and in law are equivalent.
 - b. If |Xn|≤b, for some b and E (Xn) =0 for all n then convergence in q.m. in probability and in law are equivalent.

SECTION C

Answer the following

- 19. i) Let ξ_i be the class of all intervals of the form (a, b), (a<b) a,b ξ R, but arbitrary. Then P.T. $\sigma(\xi_i) = B$.
 - ii) Prove that $X_n \xrightarrow{p} c$ implies that $F(X_n) \longrightarrow 0$ for x<c, $F(X_n) \longrightarrow 1$ for x $\geq c$ and conversely. (10)

LICEAT LUA VESTRA

(5x8=40)

2x20=40

(10)

(10x2=20)

Max.: 100 Marks

20. i) Let $X_n \xrightarrow{L} X, Y_n \xrightarrow{L} c$, then P.T.	
a. $X_n + Y_n \xrightarrow{L} X + c$	
b. $X_n Y_n \xrightarrow{L} cX$	
c. $X_n / Y_n \xrightarrow{L} X / c$.	(10)
ii) State and prove the Monotone Convergence theorem.	(10)
21. i) Derive the Kolmogorov Inequality.	(10)
ii) State and prove the necessary and sufficient condition for a series of random variable	es to
converge a.s.	(10)
(OR)	
22. i) State and prove Liapounov's theorem.	(12)
ii) Let $\{x_n\}$ be a sequence of i.i.d. r.v.'s with characteristic function $\varphi(u)$. Then prove	
that $S_n/n \xrightarrow{p} E(X)$.	(8)
